
November 1997 The Delphi Magazine 49

Controls Demystified
by Glenn Lawrence

Delphi controls are special
types of components whose

run time appearance is generally
similar to their design time repre-
sentation. Buttons, labels, grids
and check boxes are all examples
of controls. When you drop a
button on your form, it looks pretty
much as it will appear at run time.
Contrast this with a main menu
component which has an “iconic”
representation at design time that
looks nothing like how it will
appear at run time. Many compo-
nents, such as timers, don’t even
have a run time appearance.

Because of their visual nature,
controls are sometimes referred to
as “visual” (as opposed to “non-
visual”) components. This termi-
nology can however be slightly
misleading as there are some non-
visual components, such as the
main menu, that have an appear-
ance at run time but are not true
controls. To add to the confusion
all components, visual or other-
wise, reside in the “Visual Compo-
nent Library.”

In user terms the key difference
between a control and other com-
ponents is that all controls share a
number of common properties
that govern their appearance,
notably Top, Left, Height and Width
(the properties that define the
space a control occupies).

In programming terms a control
is an object of type TControl. By
definition this includes any object
of a class that is derived from the
TControl class, such as TButton,
TLabel etcetera. The TControl class
itself is derived from, or in Borland
terminology ‘descended from’ the
TComponent class. TComponent is the
class that represents all compo-
nent types, including “non-visual”
components.

There are two basic types of con-
trol, those that have a window of
their own and those that use the
window of their ‘parent.’ Those
with their own window are called

‘windowed’ controls and are of
type TWinControl. Buttons and
check boxes fall into this class. The
others are called ‘graphic’ controls
and are of type TGraphicControl.
Label and image controls fall into
this class.

This class hierarchy is repre-
sented by the Venn diagram in
Figure 1. The diagram shows that
the sets of TWinControl and
TGraphicControl objects are mutu-
ally exclusive subsets of the set of
TControl objects, which is itself a
subset of the set of TComponent
objects.

Notice that this scheme allows
for the existence of subclasses of
TControl other than TWinControl
and TGraphicControl. The VCL sup-
plied by Borland currently has no
such classes, but there is nothing
to stop third party components
being derived direct from TControl.
There is probably no reason for
anyone to do so, but be aware that
it could happen.

The Control Tree
We have already seen that there
are two basic types of control,

➤ Figure 1

windowed controls and graphic
controls, represented by the
classes TWinControl and TGraphic-
Control. A control of type TWinCon-
trol can also be a ‘parent’ to a
number of ‘child’ controls. Child
controls can be any control type,
not only graphic controls, but also
other windowed controls.

This recursive relationship
leads to a tree structure with the
root and intermediate nodes being
of type TWinControl, and leaf nodes
being either TWinControl or
TGraphicControl.

Figure 2 shows an example of a
form (ie a TWinControl) that con-
tains a panel (TWinControl) a
number of buttons (TWinControl)
and some labels (TGraphicControl)
plus a menu component. The con-
trol tree would look something like
Figure 3.

In this example Label1 and But-
ton1 are child controls of Form1,
whereas Label2 and Button2 are
child controls of Panel1. Note that
the menu component doesn’t
appear in the control tree as it is a
non-visual component, and not
therefore a control.

50 The Delphi Magazine Issue 27

➤ Figure 2

➤ Figure 3

So what does it mean for a
control to be a child of a parent?

The parent-child relationship
governs the visual appearance of
controls such that child controls
always appear within their parent.
In Windows parlance, they are
‘clipped’ by their parent as Button2
is clipped by Panel1. One obvious
corollary to this is that if a parent
control is made invisible, all of its
child controls will also be made
invisible.

The parent-child relationship
also governs the handling of user
events such as mouse messages
and key presses. See Disabled Con-
trol Surprises on page 53 for more
information.

Seasoned Windows program-
mers will no doubt have gathered
that the parent-child relationship
of the windowed controls reflects a
similar relationship that occurs
between the underlying windows
that they represent. Indeed, many
Delphi controls are simply ‘wra-
ppers’ around standard windows
controls.

For example, novice Delphi pro-
grammers often wonder why it’s
not possible to change the colour

of a TButton. The reason is that
TButton is simply a wrapper around
the underlying Windows button
control, and in the interests of con-
sistent look and feel the authors of
Windows decided that the pro-
grammer would not be allowed to
change the colour of individual
buttons. Although the user can of
course change the colours of all
buttons by changing the local
colour scheme in the Control
Panel.

Fortunately you don’t really
need to understand how the under-
lying Windows system works to
use controls as Delphi encapsu-
lates the most important aspects
into methods and properties. How-
ever, if you want to get really deep
understanding of what is going on
‘under the covers’ the classic refer-
ence for this material is Program-
ming Windows by Charles Petzold,
or the later Programming Windows
95 by Petzold and Yao.

The parent-child relationship
also plays a part in the handling of
various properties like fonts, col-
ours and hints at design time.
Check out ParentColor, ParentFont,
ParentCtrl3d and ParentShowHint in

Delphi’s online help to see how
certain properties of child con-
trols can be linked with the same
properties of their parent. This is
why you can for example change
the font of a form and the change
conveniently propagates to its
children.

Controls that share the same
parent are ‘sibling’ controls. But-
ton1 and Panel1 above are exam-
ples of siblings. Note that siblings
are allowed to visually overlap,
subject to the natural restriction
that graphic controls cannot over-
lap windowed controls. When
designing a form it is not always
easy to tell from just looking
whether an overlapping control is
a sibling or a child. Fortunately
Delphi gives you a very neat way of
finding out. Simply select the con-
trol and press the Escape key and
this will cause its parent control to
be selected and highlighted. This
is also very handy for getting to
parent controls that completely
filled by children with their Align
property set to alClient.

Unlike the class hierarchy, which
I touched on above, the control tree
is a run time relationship between
object instances. It is even possible
for controls to change parents at
run time, simply by reassigning
their Parent property. My TAimSiz-
erPanel component does this for
example to support its sub-form
feature. A child can never have
more than one parent control at a
given time however.

Most controls, whether win-
dowed or graphic, need a parent. If
you have ever tried to create a con-
trol on the fly you may have
noticed that it will refuse to appear
until its Parent property is set. The
notable exception to this rule is
the TForm control which can be a
‘top level window’ control and
therefore does not need a parent.

The child-to-parent relationship
is expressed through the child’s
Parent property. In the case of a
root control (usually a form) the
Parent property will be Nil.

The parent-to-child relationship
is expressed through the parent’s
ControlCount and Controls (array)
property through which you can
find the current set of children for

52 The Delphi Magazine Issue 27

a given parent. These properties
are however read only properties
so you can’t use them to modify
this set. If you want to change the
parentage of a control you must set
the Parent property of the child.
The parents’ ControlCount and Con-
trols properties will be updated
automatically.

The parent’s Controls array con-
tains all controls that are currently
its children, both windowed and
graphic. The Controls array also
represents the Z-order of the child
controls, with lower indexes being
furthest to the back, and higher
indexes closest to the front.
Because they are rendered directly
on the parent window, graphic
controls can never appear in front
of any windowed siblings, and
therefore will always come first in
the Controls array. Figure 4 shows
in detail how the control tree of the
above example is implemented.

Note that labels, being derived
from TGraphicControl are the only
controls in this example that can’t
be parents. All other controls are
derived from TWinControl so they
each have a Controls array contain-
ing the references to any children
they may have. It doesn’t make a
lot of sense for buttons to have
child controls but they are capable
of it and the effect is quite weird.
Usually though, as in this example,
their Controls array will be empty.

You can traverse the complete
control tree by visiting each ele-
ment of the Controls array of the
root control (usually, but not
necessarily, a form) and then

➤ Figure 4

recursively visit the elements of
the Controls array for any win-
dowed controls encountered.

Let’s apply this knowledge to a
practical example.

“Hit” Testing
That Really Works
Although Delphi’s automatic fly-
over hints and the event driven
drag and drop mechanism reduces
the need for it, there are still many
occasions where it is useful to be
able to tell when the mouse is over

a certain control. For example I
have a component TAimHelpButton
that needs to do this.

The idea is that the user clicks a
button or presses Alt-F1 to enter
help mode. The screen cursor
changes to the arrow or question
mark and the user then clicks on a
control and a pop-up help box
appears. Neil Rubenking has an
example of something like this in
his excellent book Delphi Program-
ming Problem Solver in which he
uses the Delphi function FindDrag-
Target to detect the underlying
control.

Unfortunately there is a problem
with this approach in that Find-
DragTarget does not detect dis-
abled windowed controls. Even
though the Delphi documentation
implies that it does. Disabled
graphic controls are fine, but dis-
abled windowed controls and their
children are ignored. For a more
detailed explanation see Disabled
Control Surprises on page 53.

The solution to this problem is
given by the functions shown in
Listing 1. This function recursively
descends the control tree starting
from the given ‘parent’ control and

function FindTopMostWinControlAtPos(
parent: TWinControl; { The parent at the top of the control tree }
pt: TPoint { The "hit" test point in screen coordinates }
): TWinControl;

var
i: integer;
c: TControl;

begin
Result := nil;
if parent.Visible then begin
i := parent.ControlCount -1;
while (i >= 0) and (Result = nil) do begin { Check children first }
c := parent.Controls[i];
if c is TWinControl then { Recursively descend }
Result := FindTopMostWinControlAtPos(c as TWinControl, pt);

i := i -1;
end;
if Result = nil then begin { Check parent control last }
pt := parent.ScreenToClient(pt); { Convert point to local coords }
if (pt.X >= 0) and (pt.X < parent.Width)
and (pt.Y >= 0) and (pt.Y < parent.Height) then
Result := parent; { Found it! }

end;
end;

end;

➤ Listing 1

November 1997 The Delphi Magazine 53

tests each visible windowed con-
trol to see if it contains the given
screen coordinates point.

It first checks all of the leaf con-
trols in the control tree as these
will be the top most controls. It
also traverses each Controls array
from back to front, so that the top
most siblings are checked first.

The function then uses FindTop-
MostWinControlAtPos to complete
the hit test (Listing 2). This func-
tion first uses the standard Delphi
function FindDragTarget to obtain
the top most control. Even though
this function takes a boolean value
to indicate that disabled controls
are wanted, it will not find disabled
windowed controls. It will there-
fore return a graphic control (dis-
abled or enabled) or an enabled
windowed control, or nil to indi-
cate no control found.

If FindDragTarget returns a win-
dowed control and we are also
interested in disabled controls

function GetTopMostControlAtScreenCoords(
pt: TPoint; { Screen coords for "hit" test }
allow_disabled : boolean { Indicates if disabled controls are included }
): TControl;

var wc : TWinControl;
begin
Result := FindDragTarget(pt, allow_disabled);
if (Result <> nil) and (Result is TWinControl) and allow_disabled then begin
{ Check for disabled child windowed controls }
wc := FindTopMostWinControlAtPos((Result as TWinControl), pt);
if wc = nil then abort; { Can't happen - honest guv! }
pt := wc.ScreenToClient(pt); { Convert to local coords }
Result := wc.ControlAtPos(pt, True);
if Result = nil then Result := wc;

end;
end;

➤ Listing 2

then we need to call our new func-
tion FindTopMostWinControlAtPos to
see if there might be a disabled
child windowed control (wc) that
is at the given screen coordinates.

Disabled Control Surprises
You would expect that when a control is disabled it would not
respond to mouse events, but less obvious is that its child controls will
also not respond. Even though its Enabled property is set True a control
will not respond to mouse events if its parent, grandparent or any
control higher in the control tree is disabled.

This can sometimes be useful, to disable a whole panel full of con-
trols for example, but be aware that the child controls so disabled will
not be greyed out and this could confuse your user.

Even more disconcertingly, if you have a disabled control sitting on
top of an enabled sibling control mouse events will pass through the
disabled control to be caught by the control beneath it. Your user
may think he is clicking one button, but may actually be clicking one
he can’t even see!

The FindDragTarget function and other parts of the VCL fail to detect
disabled windows because they rely on the Windows API function
WindowFromPoint which even according to the documentation “does
not retrieve the handle of a hidden, disabled, or transparent
window.”

We then use the TWinControl
method ControlAtPos to check for
any graphic controls that might be
at the given screen co-ordinates.

The DRAGRACE project on this
month’s disk is a novelty applica-
tion that shows this code put to
use in a simple game involving
drag and drop onto disabled
components.

Conclusion
As Delphi programmers we use
controls every day. Delphi makes
it so easy that we often don’t think
about it what is happening. How-
ever there are times when a deeper
understanding of Delphi controls
is very useful. Hopefully this arti-
cle has helped you to acquire some
of that understanding.

Acknowledgment
I would like to thank the members
of the Australian Delphi User
Group whose questions prompted
me to write this article and whose
critical attention has helped to
improve it.

Glenn Lawrence is a busy guy: as
well as working with AIMtec P/L in
Bundoora, Victoria, he helps run
the Australian Borland User
Group. He can be contacted on
CompuServe at 101463,3252.

© 1997 AIMTec Pty Ltd.

	The Control Tree
	“Hit” Testing That Really Works
	Conclusion
	Acknowledgment
	Disabled Control Surprises

